Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Heliyon ; 8(11): e11536, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2117829

ABSTRACT

Background: Present study aimed to identify DNA polymorphisms (variants) which can modulate the risk of COVID-19 infection progression to severe condition. TaqMan based SNP genotyping assay was performed for 11 single nucleotide polymorphisms (SNPs) in pro-coagulant and anti-coagulant genes. Methodology: A total of 33 COVID-19 patients, including dead, severe and moderately infected individuals were compared to 35 healthy controls. Both alleles in the SNP were labelled with two different fluorescent dyes (FAM and VIC) during assay formulation. DNA of study subjects were mixed with SNP assay and TaqMan master mix on 96 well PCR plate according to manufacturer's protocol and RT-PCR was performed. Allelic discrimination assay gave clear results for presence of specific allele in each sample. Three SNPs were located in the pro-coagulant genes, another three involved in blood clot dissolution while rest five were in the genes encoding natural anti-coagulants. COVID-19 infected patients were further sub-divided into three groups, deceased (n = 16), severe (n = 10) and moderately infected (n = 7). Results: SNP genotyping showed significant differences between COVID-19 patients and controls in two SNPs, rs6133 in Selectin-P (SELP) and rs5361 in Selectin-E (SELE) gene. Also, rs2020921 and rs8176592, in clot dissolution genes, tissue Plasminogen activator (tPA) and tissue factor pathway inhibitor (TFPI) respectively showed significant genotypic and allelic difference in patients of COVID-19 compared to healthy controls. Further three SNPs rs2227589, rs757583846, and rs121918476 in natural anti-coagulant genes anti-thrombin III (ATIII), protein C (PROC), and protein S (PROS) respectively showed statistically significant difference between the study groups. Conclusion: Our findings indicate that gene variants, those involved in coagulation and anti-coagulation may play a major role in determining individual susceptibility to COVID-19.

3.
Neurol Int ; 14(2): 391-405, 2022 Apr 24.
Article in English | MEDLINE | ID: covidwho-1810056

ABSTRACT

Stroke is a fatal morbidity that needs emergency medical admission and immediate medical attention. COVID-19 ischemic brain damage is closely associated with common neurological symptoms, which are extremely difficult to treat medically, and risk factors. We performed literature research about COVID-19 and ischemia in PubMed, MEDLINE, and Scopus for this current narrative review. We discovered parallel manifestations of SARS-CoV-19 infection and brain ischemia risk factors. In published papers, we discovered a similar but complex pathophysiology of SARS-CoV-2 infection and stroke pathology. A patient with other systemic co-morbidities, such as diabetes, hypertension, or any respiratory disease, has a fatal combination in intensive care management when infected with SARS-CoV-19. Furthermore, due to their shared risk factors, COVID-19 and stroke are a lethal combination for medical management to treat. In this review, we discuss shared pathophysiology, adjuvant risk factors, challenges, and advancements in stroke-associated COVID-19 therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL